
1114 

Acta Crvst. (1996). D52, 1114-1118 

Direct-Space Methods in Phase Extension and Phase Refinement. V. The Histogram 
Moments Method 

YUAN-XIN GU, M.  M.  WOOLFSON AND JIA-XING YAO 

Physics Department, Universit 3' of York, Heslington, York YOI 5DD, England. E-mail: mmwl @york.ac.uk 

(Received 29 March 1996; accepted 25 June 1996) 

Abstract 

Any distribution is completely defined by its moments. 
It is shown that a process of phase refinement can be 
carried out, based on Fourier transforms, which 
modifies the moments of electron density, separately 
in the protein and solvent regions, towards target 
values. Tests have been carried out on two moderate- 
sized proteins with 800-900 atoms in the asymmetric 
unit, one containing heavy atoms and the other not. It 
has been found that refinement using the third moment 
about zero in the protein region is most effective and 
that refinement with higher moments, or in the solvent 
region, adds nothing useful. Two kinds of weights are 
necessary in the method. One is for giving a weighted 
mixture of new phase indications with original phase 
estimates from, say, multiple isomorphous replacement. 
The other weights are applied to the Fourier coefficients 
of density maps to give the best possible signal:noise 
ratio. These weights have been explored empirically 
and the best ones found are described. It is concluded 
that since the moments method, which changes phases 
in reciprocal space, is independent of other histogram- 
matching procedures, which change density in real 
space, it has something to offer in a refinement package 
containing several procedures. 

1. Introduction 

Histogram matching has proved to be a powerful 
process in phase refinement and extension for proteins. 
Proteins containing a particular proportion of solvent 
are quite well characterized by the associated distribu- 
tion of electron density and the simple process of 
systematically modifying density, p, found with current 
phase estimates, to density, p', which gives a target 
distribution is found to be quite effective, especially 
when combined with other refinement criteria as in the 
SQUASH procedure (Zhang & Main, 1990a,b; Cowtan 
& Main, 1993). Even more effective are the double- 
histogram matching techniques described by Refaat, 
Tate & Woolfson (1996a) where the transformed 
density, p', depends not only on p, the current density 
at the grid point in question, but also on some 

© 1996 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

characteristic of the density in a spherical region 
surrounding the grid point. 

All histogram-matching techniques described thus far 
have depended on directly changing the density in a 
calculated map. Here, we shall be describing a different 
approach in which the change of density produces a 
better distribution for the whole map taken together 
without considering it in a point-by-point way. 

2. Moments and phases 

It is known that any distribution is completely defined if 
all its moments are known and these moments can be 
about any value, for example, the mean of zero. In 
general the number of moments will be infinite but if a 
finite number of moments are known, say t, then it is 
possible to define a t-block histogram which approxi- 
mately describes the distribution. 

We consider a situation where a trial set of phases is 
available and from the resultant map it has been possible 
to find the protein envelope and so to divide the unit cell 
into protein and solvent regions. The solvent region is 
expected to be fairly flat and the protein region to have a 
density histogram which can be derived from a model 
structure, which could be a known real structure with 
similar characteristics to the one under investigation. 

The electron density is given by, 

2 
p(r) = ~ ~ IF(i)I cos[2rrl, r - ~p(l)], (1) 

T 

where it is assumed that the space group is P1 and that 
terms of index i and i have been combined. For brevity 
writing p - p(r), we now define the nth moment about 
zero of the density in the protein region as, 

,, _ 1 [ .pndV ' (2) A p = ~ = ~  
7, 

where the integral is taken only over the protein region. 
Partially differentiating (2) with respect to ~p(h) gives, 

3~(h) 

1 Op 
- I n #  ' - ~ -  d V  v, ;, a~(h) 

_ 2nlF(h)[ ].p,_~ sin[27rh • r - ~0(h)] dV. (3) 
wp 7, 
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Writing, 

1 !, P'" exp(2zrih • r) d V Xm(h) = ~pp 
J 

= IXm(h)] exp{iqJ~'(h)}, (4) 

we find that, 

"OAp _ 2nlF(h)X"-t(h)[ sin[q-'p-t(h) - ~p(h)]. (5) 
&p(h) V 

Similarly, for the solvent region, 

OA~ _ 2nIF(h)Y,,_~(h)l sin[~pi,!_~(h) _ (p(h)]. (6) 
&p(h) V 

where the subscript s refers to the solvent region and, 

Ym(h) = ~,..1 ,]'pm exp(27rih • r) dV = IYm(h)l exp[iq-'m(h)]. 

(7) 

We now define two residuals, 

, n ,, ( 8 a )  Rp : Ap. O - Ap, 

and, 

R~ = A',!.o - A',!, (8b) 

" " and : where Ap. 0 and A~'.0 are the target values for At, A,, 
respectively. A steepest descents method is now used to 
find the shifts in phases which will eliminate, or reduce, 
the residuals given by (8a) and (8b). For a particular n 
and h the usual gradient method gives, 

A-"  ~ ~ ) A ~ /  L I aA~'&p(h) ]2 : ng (9) 

for the protein and a similar expression, with subscript s 
instead o fp  for the solvent. In test applications we have 
made so far n = 2 to 6 has been used for the protein 
region but for the solvent region, which is expected to 
be fiat, we have only tried n = 2 and 3. The value n = 1 
is not very informative since X0(h) and Y0(h) then 
depend only on the regions of the cell occupied by 
protein and solvent and not on the variation of density 
within those regions. It should also be noted that in an 
ideal situation where the solvent is completely uniform a 
value of ~ '  = (fi,)2 would give zero variance. There is 
no real need to consider values of n higher than 2 to 
describe ideal conditions in the solvent region but, 
nevertheless, we did consider n = 3 just in case we 
found a useful result. 

The refinement strategy given by (9) is satisfactory 
for general reflections but for special reflections another 
approach has been used. Here the phase is kept fixed but 
the magnitude of the structure factor is refined. Now we 
write, 

0F(h) 
1 . l 0p  

- Vv .! np'- 0F(h~-) dV 
I "  

2n 1' p ' - l  cos[2zrh, r - ~v(h)] d V 
w, 
2 

= ~ IX,_t(h)[ cos[q~(h) - ~v~,-t (h)]. (10) 

Equation (9) would be applicable where there are only 
general reflections. Where both general and special 
reflections occur then the shift in phase or magnitude 
should be given by, 

1 Apq(h) = R~ - ~  ~ , (11) 

where q(h) = (p(h) for a general reflection and F(h) for 
a special reflection. 

The phase-changing strategy for special reflections is 
that at any stage we have available a current weight 
w(h) which starts with the value unity. In each 
refinement cycle if 

w(h)lF(h)l + AF(h) > 0 the phase is unchanged 

but if w(h)lF(h)] + AF(h) < 0 the phase is changed by :z. 

The new weight is then given by, 

w(h)ne,, = m i n {  Iw(h)lF(h),+AF(h),lF(h)l . 1 .0} .  (12) 

This weighting system allows a gradualistic approach 
towards switching from one special phase to the 
alternative value. 

3 .  W e i g h t i n g  s c h e m e s  

Experience with different methods of phase refinement 
for proteins indicates that good weighting procedures at 
all stages are very important in getting the best results. 
Where multiple-isomorphous-replacement (MIR) phase 
estimates are available then it is better to proceed with a 
weighted mixture of the phase given by the refinement 
and the MIR phases. It is also desirable to have other 
weights indicating the overall reliability of the indivi- 
dual phase estimates which can be applied to the Fourier 
coefficients of the calculated density maps to increase 
the map quality in terms of signal:noise ratio and to give 
for the final map a higher value of the conventional 
map-correlation coefficient (MCC). The moments 
technique we report here does not suggest an obvious 
weighting scheme, as do some methods, so we have 
tried various schemes based on intuitive ideas. The 
weighting schemes B and C described below are the two 
which have been most effective of the eight different 
weighting schemes that were investigated. We also give 
scheme A which is reasonably effective without any 
weights being applied. 
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3.1. Scheme A 

This used no weights either for retaining the influence 
of the MIR phases or to modify the Fourier coefficients 
when maps were calculated. 

3.2. Scheme B 

The mixing of the phase given by the refinement and 
MIR phases was effected by, 

tan(99~,,) 

/TWMI R sin(~PMIR) + E(O)X ''-t sin(q%ld + A~p) 

~lW'MIR COS(qgMIR) + E(O)X ''-1 COS(~0ol d --{- aqg) 
T 

= ~ .  (12) 

where 17 is an adjustable parameter and Aq0 is the shift 
indicated by the gradient method. The corresponding 
weight used for calculating the maps at each stage and 
for the final density map is, 

( T  2 + B2)  1/2 
, (13) Wmap = 1 +/7 

with cut offs at a lower limit of 0.1 and an upper limit 
of 1. 

3.3. Scheme C 

The mixing of the phase given by the refinement and 
MIR phases was effected by, 

Table 1. Refinement o.1"6450 1.9]4 MIR phases of  2-Zn 
insulin 

Initial mean phase error (MPE) was 6 2 . 1  with M C C =  0.372. 
NC = number of  refinement cycles; MPE = unweighted mean phase 
error: MCC = MCC for map with unweighted Fourier coefficients: 
WMPE = weighted MPE with weights win,p: WMCC = MCC for map 
with Fourier coefficients w.,,,vE: E M P E = E - w e i g h t e d  MPE: 
WEMPE = w,,,e E-weighted MPE. 

Weighting scheme 
A B ( 0  =0 .1}  C (rl = 0.1) 

NC 3 3 3 
MPE ( ) 53.4 54.5 54.3 
MCC 0.504 0.512 0.515 
WMPE ( )  46.4 46.5 
W M C C  0.572 0.570 
EMPE ( ) 49.9 50.6 50.4 
WEMPE ( )  43.5 43.7 

of the changes were unrealistically large - bigger than 
3 6 0 ,  for example. The reason for this was that the 
linear theory was being taken well beyond its range of 
applicability. To deal with this problem phase shifts 
were chosen by a much simpler formula, 

3A~, 
A~o(h) = k (15) 

a~o(h)" 

where k was taken to make the mean phase shift equal to 
some value chosen by experience. For special reflec- 
tions we found that (1 1) could still be used. 

Most of the tes:s which have been made are lbr 
n - 3. Tests for higher values of n gave results which 

tan(qgne,,. ) = 
/7WMI R sin(99MIR) + l(1 --/7)E(0)X"-I[1 + cos(3q0)] sin(qgoj d + Aqg) T 

- -  - - .  

/7WMi R COS(qgMIR) + ½(1 --/7)E(0)X"-I[1 + cos(&0)] COS(q%Zd + Aqo) B 
(14) 

Again /7 is an adjustable parameter and &0 = q%td+ 
Aqg--g,M~ R. The weight for calculating maps is 
Wm~ p = (T 2 + B2) 1/: with lower and upper cut offs of 
0.1 and 1. 

Although the above analysis has been given in terms 
of structure amplitudes JFI we have found empirically 
that the best results are obtained by the use of 
normalized structure amplitudes IEI. This is consistent 
with our general experience with many processes of 
phase extension and refinement that have been investi- 
gated in this laboratory. Tests with observed IFl's and 
IFl's with all degrees of sharpening indicate that the use 
of IEI usually gives the best results. 

4. Tests of  the refining algorithm 

It must be said at this stage that although the theory we 
have given, which was the basis of our tests, is perfectly 
valid the actual procedures which turned out to be the 
most effective did not use all the fine detail of the 
theory. Thus, when (11) was applied to give shifts some 

were highly correlated with the n = 3 results, slightly 
worse for n = 4 and much worse for n -- 5 and n = 6. 
The correlation between the results for different n can 
be understood intuitively. Any change of phase which 
alters the distribution of the values of p in such a way 
that there is a bias towards larger values will increase all 
the moments and conversely if the bias is in the other 
direction the moments will all reduce in value. No good 
way of combining the results for different values of n 
has been found since all combinations tried gave results 
worse than for n = 3 alone. 

Values of n equal to 1 or 2 are also not very useful. 
The values of/3 and ,02 , where the averages are taken 
over the whole cell, are structure-invariant quantities 
and, since most of the density resides in the protein 
region, the averages over the protein region are not very 
sensitive to phase variations. The same situation exists 
with shifts given by the moments in the solvent region. 
The results for the solvent region alone were found to be 
much worse than for n = 3 in the protein region and no 
fruitful way of combining the results could be found. 
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For all the reasons given the results reported here are 
only for n = 3 in the protein region. 

The first test we report is for MIR phases at 1.9,~ 
resolution for 2-Zn insulin (Baker, Blundell, Cutfield, 
Cutfield, Dodson, Dodson, Hodgkin, Hubbard, Isaacs, 
Reynolds, Sakabe, Sakabe & Vijayan, 1988). The space 
group is R3 with a = 82.5, c =  34.0A, Z = 9. The 
asymmetric unit contains 831 non-H atoms including 
two Zn atoms but excluding solvent. The results of 
refinement are shown in Table 1. 

In these trials the mean phase shift per cycle, as 
controlled by the parameter k in (15), were 20, 20 and 
10 in the three cycles used as this pattern has been 
found to be satisfactory. 

A trial was also made with a structure of similar size 
to 2-Zn insulin RNApl  (Bezborodova, Ermekbaeva, 
Shlyapnikov, Polyakov & Bezborodov, 1988) but 
containing no atoms heavier than S atoms. Space 
group P21 with a = 32.01, b = 43.76, c = 30.67 A, 
fl = 115.83 , Z = 2. The asymmetric unit contains 808 
non-H atoms in the asymmetric unit, including five S 
atoms, plus 83 water molecules. There are 23853 
independent reflections to 1.17 A resolution. In this case 
errors were artificially imposed on the calculated phases 
to give an initial mean phase error of 65 .4  but the 
observed data were used in the refinement process. 
After two cycles using scheme A (no weights) the MPE 
had dropped to 55.9 . 

5. Comments and conclusions 

The tests reported here are a small sample of many tests 
which have been carried out with various schemes for 
weighting the Fourier maps which are required and for 
combining new phases estimated with the MIR phases. 
In general the efficiency of the moments method for 
phase refinement is similar to, but slightly worse than, 
that of the normal histogram-matching method but 
considerably less than that of either of the double- 
histogram matching methods (Refaat, Tate & Woolfson, 
1996a). 

It is possible that an even more exhaustive investiga- 
tion of the moments method would lead to some 
improvements but we cannot see that it would ever 
approach the effectiveness of, say, the double-histo- 
gram method or the LDE (low-density elimination) 
method (Shiono & Wooifson, 1991; Refaat & 
Woolfson, 1993). However, its main strength lies in 
its independent approach, modifying phases in recipro- 
cal space rather than density in real space, so that used 
in conjunction with other histogram-matching methods 
it may have something extra to offer. For example, a 
combination involving nine cycles of the moments 
method interspersed with three cycles of the double- 
histogram-with-local-variance method gave a map with 
WMCC = 0.610 for the 2-Zn insulin 1.9 A data. 

It is worth pointing out that a new procedure, even if 
less effective than some previous procedures, may still 
have something to offer as long as it is independent of 
those previous procedures. A single stel~of the moments 
method gives a quite different pattern of change of 
density from that given by a single step of normal 
histogram matching, for example, since there is no 
strong correlation between the change of density during 
the step and the original density. To illustrate this 
principle from the field of statistics, if several 
independent measurements of the same quantity, X, 
are made with different variances then an inverse- 
variance-weighted average of them all gives a combined 
estimate with a lower variance (uncertainty) than any of 
the individual measurements, including the best one. 
This general principle is worth bearing in mind. The 
phase extension and refinement system SQUASH 
contains components of very different refinement 
capability but the combination is more powerful than 
any of them used alone. The moments method with 
n = 3 is to be incorporated in the phase extension and 
refinement program, PERP (Refaat, Tate & Woolfson, 
1996b) which contains seven other phase refinement 
procedures, all of different capabilities but together 
more effective than any of them. 

It will be clear that, despite the introduction of this 
method as one involving moments, when it comes to 
application it is only the third moment which has been 
exploited. It seems plausible that the normal histo- 
gram-matching method, which is matching all 
moments simultaneously, is bringing more information 
to bear and therefore should be the more powerful 
method. On the other hand our results indicate that 
the information from higher moments is heavily 
correlated with the third-moment information so 
that, perhaps, not much more is being obtained from 
the full histogram than is being obtained from the 
third moment alone. 

We are grateful to the Academia Sinica, the Royal 
Society and the Leverhulme Trust for support which has 
made possible this research and other collaboration 
between the Institute of Physics, Beijing, and the 
Physics Department of the University of York. 
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